Automated Classification and Cluster Visualization of Genotypes Derived from High Resolution Melt Curves.
نویسندگان
چکیده
INTRODUCTION High Resolution Melting (HRM) following PCR has been used to identify DNA genotypes. Fluorescent dyes bounded to double strand DNA lose their fluorescence with increasing temperature, yielding different signatures for different genotypes. Recent software tools have been made available to aid in the distinction of different genotypes, but they are not fully automated, used only for research purposes, or require some level of interaction or confirmation from an analyst. MATERIALS AND METHODS We describe a fully automated machine learning software algorithm that classifies unknown genotypes. Dynamic melt curves are transformed to multidimensional clusters of points whereby a training set is used to establish the distribution of genotype clusters. Subsequently, probabilistic and statistical methods were used to classify the genotypes of unknown DNA samples on 4 different assays (40 VKORC1, CYP2C9*2, CYP2C9*3 samples in triplicate, and 49 MTHFR c.665C>T samples in triplicate) run on the Roche LC480. Melt curves of each of the triplicates were genotyped separately. RESULTS Automated genotyping called 100% of VKORC1, CYP2C9*3 and MTHFR c.665C>T samples correctly. 97.5% of CYP2C9*2 melt curves were genotyped correctly with the remaining 2.5% given a no call due to the inability to decipher 3 melt curves in close proximity as either homozygous mutant or wild-type with greater than 99.5% posterior probability. CONCLUSIONS We demonstrate the ability to fully automate DNA genotyping from HRM curves systematically and accurately without requiring any user interpretation or interaction with the data. Visualization of genotype clusters and quantification of the expected misclassification rate is also available to provide feedback to assay scientists and engineers as changes are made to the assay or instrument.
منابع مشابه
Trainable High Resolution Melt Curve Machine Learning Classifier for Large-Scale Reliable Genotyping of Sequence Variants
High resolution melt (HRM) is gaining considerable popularity as a simple and robust method for genotyping sequence variants. However, accurate genotyping of an unknown sample for which a large number of possible variants may exist will require an automated HRM curve identification method capable of comparing unknowns against a large cohort of known sequence variants. Herein, we describe a new ...
متن کاملDetection and discrimination of two Brucella species by multiplex real-time PCR and high-resolution melt analysis curve from human blood and comparison of results using RFLP
Objective(s): Rapid and accurate detection of Brucella abortus and Brucella melitensis from clinical samples is so important because antibiotic treatment has major side effects. This study reveals a new method in detection of clinical samples of brucellosis using real-time PCR and high-resolution melt (HRM) curve analysis. Materials and Methods: 160 brucellosis suspicious samples with more tha...
متن کاملGaussian decomposition of high-resolution melt curve derivatives for measuring genome-editing efficiency
We describe a method for measuring genome editing efficiency from in silico analysis of high-resolution melt curve data. The melt curve data derived from amplicons of genome-edited or unmodified target sites were processed to remove the background fluorescent signal emanating from free fluorophore and then corrected for temperature-dependent quenching of fluorescence of double-stranded DNA-boun...
متن کاملDynamic time warping assessment of high-resolution melt curves provides a robust metric for fungal identification
Fungal infections are a global problem imposing considerable disease burden. One of the unmet needs in addressing these infections is rapid, sensitive diagnostics. A promising molecular diagnostic approach is high-resolution melt analysis (HRM). However, there has been little effort in leveraging HRM data for automated, objective identification of fungal species. The purpose of these studies wa...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PloS one
دوره 10 11 شماره
صفحات -
تاریخ انتشار 2015